
Cracking & Keygen
“If there’s a will, there’s a way”

Disclaimer
I am legally obligated to inform you:
You shouldn’t pirate, support the developers, this presentation
is for educational purposes only

I am not a professional

I am not a Ph.D

All knowledge in this presentation is off the top of my head,
not all of it may be correct.

THE GOOD OLD DAYS

Buy game disk
Play game
Enjoy game, tell friend about it
Friend asks for game
“Yeah I can just make a copy”
Copy le game to blank disk
Free game for friend!!!!!!!

NOW

DRM
“Please enter a serial key”
“Please activate windows”
“You MUST open Steam to play
this game”
“Activate MSWord NOW!!!”
Denuvo
Copy protection
Please pay $200 for our screen
reader because you are blind

NOW (ALSO)

Software cracking
Game cracking
Keygenning
Reverse engineering
WAREZ

Simple, real-world example: Creeper World 3

If you played Flash games on ArmorGames,
Kongregate, etc. in your youth, you might
recognize this game.

Vulnerable and easy target of CRACKING:
- Openly accessible “re-download” page

that allows you to download a
key-protected game executable

- Unity Engine game, meaning the game
logic is easily reversed engineered due
to the ease of decompilation of C#
scripts

7

Oh no! Product key!

Now I have to pay for
the game!

Unless I bust out my
1337 h4x0r skillz and
crack the game…

How 2 crack? Think
about it….

A (game) program is code
that is executed by your
computer.

Unfortunately, that code
has truthfully determined
that there is no product
key on record, hence
presenting us with this
screen.

Know how it works,
know how to circumvent it
(in regards to copy protection)

There are two aspects of the game that are targets of knowing,
which if known, can result in copy protection circumvention.

(i) The process by which the Product Key screen is determined to
be shown, i.e. the game code that determines if there is a valid
key on record,
(ii) The algorithm behind verifying the Product Key and any
methods, if possible and tractable, of generating the key without
knowing developer secrets.

The Process of Knowing – Reverse Engineering

Reverse Engineering (in the context of code):
Figuring out what a piece of code does without the original
source the code was generated from or any documentation
or insights into what it is supposed to do and how it does it.

In this case: understanding the game’s behavior through
deduction from the compiled code available in the
executable without access to the game’s source code.

Also in this case: not as hard and we’re cheating a bit by
“reverse engineering” C# Intermediate Language

The Process of Knowing – What Must Be Known Beforehand
What kind of code is being executed?
Ultimately, this ends up being x86(_64) machine code on most
personal computers nowadays. But in some cases (this game being
one of them), we are given a higher-level language like JVM (Java)
Bytecode or CIL (Common Intermediate Language, Microsoft’s
version of JVM bytecode).
What does the code being executed actually do (at the micro
level)?
Computers (including abstract machines executing CIL) execute
instructions, which are well-defined in a specification and you can
find out what they do and how they are encoded in a manual
somewhere.

Giveaway of an Essential
Fact To Be Known - What
kind of code?

If you have UI that
looks like this, it’s
probably a Unity game

The game logic is
encoded in a .NET
Assembly, meaning that
Unity Engine essentially
executes compiled C#

Essential Fact To Be Known - Unity / C# / CIL
This fact can also be verified by looking at the game’s files.
This gives it away, for sure.

Assembly-CSharp.dll is the main .NET Assembly (like a
dynamically linked library file but for CIL and the .NET Runtime)
in the game that encodes game logic, which probably also includes
the product key check.

14

The Process of Knowing – Code Analysis in Order to Know

How to figure out what the game does: look at the CIL in
the game binary (Assembly-CSharp) and decode and
understand the instructions to form a bigger picture of
what they do

15

The Process of Knowing – Code Analysis in Order to Know

How to figure out what the game does: look at the CIL in
the game binary (Assembly-CSharp) and decode and
understand the instructions to form a bigger picture of
what they do

jk

16

The Process of Knowing – Tools to Aid in Knowing

dnSpy(Ex) - Popular tool for
disassembly, decompilation,
debugging, and analysis of .NET
binaries and libraries
(This is basically easy mode, more on that later)

Ghidra - RE tool developed by the
NSA. Supports disassembly,
decompilation, analysis of many
popular executable/library formats
and instruction sets

IDA Pro - RE tool by Hexrays.
Costs too much.

The Process of Knowing – Tools to Aid in Knowing - dnSpy

Disassemble Decompile Debug

The Process of Knowing – Tools to Aid in Knowing

Disassemble - Encoded instructions too hard to read? Turn them into
human-readable mnemonics (assembly)

Disasm

The Process of Knowing – Tools to Aid in Knowing
Decompile - CIL assembly too hard too read? Turn it into a
high-level code representation

C#

VB

The Process of Knowing
Tools to Aid in Knowing

Debug - Still can’t understand the
code through static analysis of the
binary alone?

Step through it instruction by
instruction while it is executing, and
view the program state and what
the instructions do step by step in
order to deduce what it is doing.

The Process of Knowing – Where to look?

We must find the code that
creates this screen. But where
is it?

To display this screen, we figure
that the code has to load the text
on it from somewhere.

That somewhere is probably in the
game binary. What if we did a
search for this keyword, “Key”?

The Process of Knowing – Where to look.
Search for functions that make
use of a String with “Key” in it
in dnSpy

This one looks interesting…

And it turns out to be exactly
what we are looking for

The Process of Knowing – Where to look…

It seems that this
method is responsible
for displaying the
Product Key screen.
Reading through the
method body will land
us at this very
obvious product key
check:

Now we Know (i)

(i) The process by which the Product Key screen is determined
to be shown, i.e. the game code that determines if there is a
valid key on record

We can now Crack this
game, or in other words
modify it to avoid the
key check.

Analogous to “modifying” a
bike lock’s structure by
cutting to allow for theft
of the bike without
touching the lock itself

Now that we have Known (i): Cracking

The value upon which the game is
contingently loaded is a flag from
the method:
flag = global::Encoder.CheckKey(text, out num, out num2);

So, what if we patch the method
body to have it always return true ?

Now that we have Known (i): Cracking

To patch the method, we will change a few
instructions in the method body.

Now that we have Known (i): Cracking

Which yields a new decompilation:

What did we do?

ldc.i4.1 Push an Int32 “1” (boolean true) on the stack
ret Return from the method w/ top stack value

Essentially, a “return true;” which never leads to
execution of the old key checking code

Now that we have Known (i): Cracking

h4x0r3d!!11!!!!1!1

The Process of Knowing – How 2 do without patch?

Let’s face it: patching isn’t a clean solution. A clean solution is creating
legit keys yourself so you don’t have to worry about patching.

We should investigate how the Product Keys are actually verified.

In practice, this is actually fairly difficult for many real applications,
but this game has a relatively simple key generation system.

The Process of Knowing – Key Verification Dissection
public static bool CheckKey(string key, out uint id, out uint randomNumber)
{
 byte[] array = Encoder.Decode(key);
 byte[] array2 = RC4.Cipher("SupportIndieDevelopersWeNeedIt", array);
 id = 0U;
 for (int i = 0; i < 32; i++)
 {
 uint num = (uint)((uint)Encoder.ReadBit(array2, 0 + i * 2) << i);
 id |= num;
 }
 randomNumber = 0U;
 for (int j = 0; j < 32; j++)
 {
 uint num2 = (uint)((uint)Encoder.ReadBit(array2, 1 + j * 2) << j);
 randomNumber |= num2;
 }
 uint num3 = (uint)(((int)Encoder.ReadByte(array2, 8) << 8) |
(int)Encoder.ReadByte(array2, 9));
 uint num4 = id;
 id /= 89U;
 return num4 % 89U == 0U && (uint)Encoder.Digest(array2, 8) == num3;
}

Decode
Decode key string to byte array
Decrypt (ARR)
ARR = “Decrypt” byte array with RC4
Extract Key (INT1)
Extract all even position bits of the first
8 bytes of ARR into a 32-bit integer =
INT1
Extract “Random” Int (INT2)
Extract all odd position bits of the first
8 bytes of ARR into a 32-bit integer =
INT2
Extract 16-bit MD5 Value (INT3)
Extract bytes 8 and 9 of ARR and
combine them into a 16-bit integer
stored in a 32-bit variable INT3
Validate Key
Check INT1 is divisible by 89 and the
16-bit integer formed by the first two
bytes of the MD5 digest of the first 8
bytes of ARR (INT1,INT2) equals INT3

The Process of Knowing – Key Decode Dissection
ZBMB-WFJG-XFNB-GXKX-PYDP (Key)
ZBMBWFJGXFNBGXKXPYDP (RemoveDashes)
ZB MB WF JG XF NB GX KX PY DP (AlphaUnmap b4)
B6 36 E8 04 F8 16 4F 7F AD 2A (AlphaUnmap after)
b“\xB6\x36\xE8\x04\xF8\x16\x4F\x7F\xAD\x2A”

Alternate Base16 Mapping:
0123456789ABCDEF
JNDMGHBKFCPZRYWX

1. Remove
dashes

2. Decode as
bytes using
alternate
b16 mapping

3. Return byte
array of
length 10

The Process of Knowing – Key Decrypt Dissection
B6 36 E8 04 F8 16 4F 7F AD 2A (Before RC4)
9D 1D 19 CD 69 18 9F CB C7 EC (After RC4)

Cipher the bytes with an RC4 keystream initialized with key
SupportIndieDevelopersWeNeedIt (ascii)
537570706F7274496E646965446576656C6F7065727357654E6565644974 (hex)

RC4 (Rivest Cipher 4):
Like a random number generator. Takes a key as the “seed,” and
then generates a stream of bytes which can be used to XOR
plaintext against to cipher it or XOR against ciphertext to
decipher. So we read 10 bytes of the keystream and XOR against
our Decoded Product Key.

The Process of Knowing – Key Extract Dissection

9D 1D 19 CD 69 18 9F CB C7 EC
9D 1D 19 CD 69 18 9F CB

10011101 00011101 00011001 11001101 01101001 00011000 10011111 11001011
< - - -/ < - - -/ < - - -/ < - - -/ < - - -/ < - - -/ < - - -/ < - - -/
 3 2 1 0 7 6 5 4 . . 9 8

Traverse all “even” bit positions in the manner described, build the 32-bit int
starting from the least significant bit.
10010111010010011011010101110111

97 49 B5 77 = INT1
Same for the other INT2 value described, only traverse the “odd” bits

The Process of Knowing – Key MD5 Dissection

9D 1D 19 CD 69 18 9F CB C7 EC

MD5(9D 1D 19 CD 69 18 9F CB)[0] == C7
MD5(9D 1D 19 CD 69 18 9F CB)[1] == EC

Basically, this part is just extracting C7 EC, the last two bytes
which is supposed to be part of the key’s MD5 hash.
The last two bytes of the key must be the first two bytes of the
MD5 digest of 9D 1D 19 CD 69 18 9F CB

The Process of Knowing – Key Validation Dissection

Full Key (Deciphered): 9D 1D 19 CD 69 18 9F CB C7 EC
Key INT1: 97 49 B5 77

The value of INT1 % 89 must be 0. That is,
97 49 B5 77 = 2538190199
2538190199 % 89 == 0 (It is)

The value of the first two bytes of the MD5 digest of the first 8 bytes of
the key must be equal to the value of the last two bytes of the key.
MD5(9D 1D 19 CD 69 18 9F CB) = c7ec3b0b0444446869d4bdafff7b2e21
MD5(9D 1D 19 CD 69 18 9F CB)[0] == C7 (It is)
MD5(9D 1D 19 CD 69 18 9F CB)[1] == EC (It is) Valid Key!

Now we Know (ii)

(ii) The algorithm behind verifying the Product Key and any
methods, if possible and tractable, of generating the key
without knowing developer secrets
We can now Keygen this
game, which means
generating keys now that
we know the algorithm.

Analogous to picking a bike’s
lock by “knowing how it
works” in order to allow for
theft of the bike without
destructive modification

Now that we have Known (ii): Keygen

Step 1. Write the code to
generate a key using what
you have Known about The
Key Algorithm

Step 2. ???

Step 3. PROFIT

https://github.com/ExtraConcentratedJuice/CreeperWorld3Keygen

https://www.google.com/url?q=https://github.com/ExtraJuiceMan/CreeperWorld3Keygen&sa=D&source=editors&ust=1748013822779784&usg=AOvVaw3KDbSU740Hb5z69Uwj3jrQ
https://www.google.com/url?q=https://github.com/ExtraConcentratedJuice/CreeperWorld3Keygen&sa=D&source=editors&ust=1748013822780080&usg=AOvVaw10LdhDr0FgN9PXaOikGwMG

Now that we have Known (ii): Keygen
1337 h4x0r3d!11!11!!!!!!!!!!

Let’s be real: this is easy mode
We’re playing on easy mode and this is an easy application to
crack. .NET in particular lends itself well to decompilation and it
is easy to reason about its behavior.

Additionally, the key generation algorithm for this game wasn’t
particularly strong, nor was the code protected by obfuscation
such as in Denuvo-protected games.

Reverse engineering native code and native executables is a bit
more than just dropping an assembly into the decompiler…

