Z =\ Cracking & Keygen

"If there's a will, there's a way”

Disclaimer

I am legally obligated to inform you:

You shouldn't pirate, support the developers, this presentation
is for educational purposes only

I am not a professional

I am not a Ph.D

All knowledge in this presentation is off the top of my head,
not all of it may be correct.

THE GOOD OLD DAYS

Buy game disk
Play game

Enjoy game, tell friend about it
Friend asks for game

“Yeah T can just make a copy”
Copy le game to blank disk

NOW

DRM

"Please enter a serial key"
"Please activate windows"

“You MUST open Steam to play

this game"

“Activate MSWord NOWIII"
Denuvo

Copy protection

Please pay $200 for our screen
reader because you are blind

NOW (ALSO)

Software cracking
Game cracking
Keygenning
Reverse engineerin
WAREZ

CODEX
PRIESENT'S
-

The Sims 4 My Wedding Stories (c) Electronic Arts

Release Date : 02/2022 Protection : Origin
Discs P Genre : Simulation

——IMPRESSES—
ALL PIRATES ACROSS THE SEA

~Game Info-
Red Dead Redemption 2

~Protection—
Digital.Al (former Arxan) +
Socialclub + License

Credits_to Mr_Goldberg for his
socialclub emulator and game
Jlauncher.

368 courier grou

1213 fairlight iso
1

1481 site nfo:
14318 game rip

sonething ue’re n

Simple, real-world example: Creeper World 3

If you played Flash games on ArmorGames,
Kongregate, etc. in your youth, you might
recognize this game.

Vulnerable and easy target of CRACKING:
Openly accessible "re-download” page
that allows you to download a
key-protected game executable
Unity Engine game, meaning the game
logic is easily reversed engineered due
to the ease of decompilation of C#
scripts

Creeper World Il

Arc Eternal

Now I have to pay for
the gamel

Unless T bust out my
1337 h4x0r skillz and
crack the game...

i How 2 crack? Think
Creeper World Il ClbOUT '1.

Arc Eternal
Enter yo ur product key below.
r

A (game) program is code
that is executed by your
computer.

Unfortunately, that code
has truthfully determined
that there is no product
key on record, hence
presenting us with this
screen.

Know how it works,
know how to circumvent it 0 @ Q
(in regards to copy protection) B

There are two aspects of the game that are targets of knowing,
which if known, can result in copy protection circumvention.

(i) The process by which the Product Key screen is determined to
be shown, i.e. the game code that determines if there is a valid
key on record,

(ii) The algorithm behind verifying the Product Key and any
methods, if possible and tractable, of generating the key without
knowing developer secrets.

The Process of Knowing - Reverse Engineering

Reverse Engineering (in the context of code):

Figuring out what a piece of code does without the original
source the code was generated from or any documentation
or insights into what it is supposed to do and how it does it.

In this case: understanding the game's behavior through
deduction from the compiled code available in the
executable without access to the game's source code.

Also in this case: not as hard and we're cheating a bit by
“reverse engineering” C# Intermediate Language

The Process of Knowing - What Must Be Known Beforehand

What kind of code is being executed?

Ultimately, this ends up being x86(_64) machine code on most
personal computers nowadays. But in some cases (this game being
one of them), we are given a higher-level language like JVM (Java)
Bytecode or CIL (Common Intermediate Language, Microsoft's

version of JVM bytecode).

What does the code being executed actually do (at the micro
level)?

Computers (including abstract machines executing CIL) execute
instructions, which are well-defined in a specification and you can
find out what they do and how they are encoded in a manual
somewhere.

_ Giveaway of an Essential

Creeper World Il Fact To Be Known - What
Arc Eternal .

e e kind Of code?

If you have UT that
looks like this, it's
probably a Unity game

The game logic is
encoded ina .NET
Assembly, meaning that
Unity Engine essentially
executes compiled C#

Essential Fact To Be Known - Unity / C# / CIL

This fact can also be verified by looking at the game's files.
This gives it away, for sure.

GELIEETE $ +1le Aqqembl —Cﬁharp dll
Assembly Cﬁharp dll: PE32 executable (DLL) (console) Intel 80386 Mono/.Net assembly, for MS Windows

Assembly-CSharp.dll is the main NET Assembly (like a
dynamically linked library file but for CIL and the .NET Runtime)
in the game that encodes game logic, which probably also includes
the product key check.

The Process of Knowing - Code Analysis in Order to Know

How to figure out what the game does: look at the CIL in
the game binary (Assembly-CSharp) and decode and

understand the instructions o form a bigger picture of

what they do

List of CIL instructions

Article Talk Read Edit

From Wikipedia, the free encyclopedia

Main article: Common Intermediate Language

This is a list of the instructions in the instruction set of the Common Intermediate Language bytecode:

View history

« Opcode abbreviated from operation code is the portion of a machine language instruction that specifies the operation to be performed

« Base instructions form a Turing-complete instruction set
« Object model instructions provide an implementation for the Common Type System

Opcode ¢ Instruction + Description

0x58 add Add two values, returning a new value

0xD6 add.ovf Add signed integer values with overflow check

0xD7 add.ovf.un Add unsigned integer values with overflow check

OX5F and Bitwise AND of two integral values, returns an integral value
OXFE 0x00 | arglist Return argument list handle for the current method

0x3B beq <int32 (target)> Branch to target if equal

O0x2E beg.s <int8 (target)> Branch to target if equal, short form

0x3C bge <int32 (target)> Branch to target if greater than or equal to

0x2F bge.s <int8 (target)> Branch to target if greater than or equal to, short form

Oxa1 hoe 11N ¢3int2? (+arcet+)s Branch to taraet if areater than or eaial to (fun<ioned or unordered)

Type of
instruction

Base instruction
Base instruction
Base instruction
Base instruction
Base instruction
Base instruction
Base instruction
Base instruction
Base instruction

Race inetriiction

A 1language v

Tools v

- START. o)
REHD
movER

Y
mzu»,MFf
BREG, TERM
Mo VEM
T 6 REG TERD
mv[(l (REG, TERD
pp0 (REG OVE

By 4in

(omP CREG, I
6L e Ee
movEr BREG RESS
pRanT RESUAT
S7oP

v DS |

RECULT s)

Poe 9¢ i

qepn 05/

(224

Ajn
PManermo (Gz e

[

o VEm (REG,TEED

sTof

;,yw’ﬂ o ——
0¥ty 2 ——
(03)+ 05~ 2

lake

4]

The Process of Knowing - Code Analysis in Order to Know

How to figure out what the game does: look at the CIL in
embly-CSharp) and decode and

A 1language v

Article Talk ead Edit View

From Wikipedia, th¥

Main article: Commo»

This is a list of the instructid

« Opcode abbreviated from 8

beration to be perfor

Mo VEM ,
T 6 REG TERD

move % (RED, TERD
pp0 (REG OVE

103)+ 05"

« Base instructions form a Turin

Biin
« Object model instructions provide a

Rr
e of vEm (REG,TE
Opcode ¢ Instruction RITESe . Re

instruction conP ¢ .

6L Le 00
0x58 add Add two values, retd Base instruction RESUY
o VED BRED /
0xD6 add.ovf Add signed integer values with overflow check Base instruction PRZNT RESULT
0xD7 add.ovf.un Add unsigned integer values with overfiow check Base instruction S7P i
ps
OxX5F and Bitwise AND of two integral values, returns an integral value Base instruction NS Bis e)
OXFE Ox00 | arglist Return argument list handle for the current method Base instruction £ ¢ ‘]’1
v
0x3B beq <int32 (target)> Branch to target if equal Base instruction {e R ps
O0x2E beq.s <int8 (target)> Branch to target if equal, short form Base instruction £ (4
0x3C bge <int32 (target)> Branch to target if greater than or equal to Base instruction ot Aion lake
- Mnemord (

OX2F bge.s <int8 (target)> Branch to target if greater than or equal to, short form Base instruction ik W erky D

e <1of

Oxa1 hoe 11N ¢3int2? (+arcet+)s Branch to taraet if areater than or eaial to (fun<ioned or unordered) Race inetriiction

The Process of Knowing - Tools to Aid in Knowing
dnSpy(Ex) - Popular tool for

I disassembly, decompilation, DONT ALWAY

n debugging, and analysis of NET REVERSE ENGINEE!

binaries and libraries -
(This is basically easy mode, more on that later)

Ghidra - RE tool developed by the %
NSA. Supports disassembly,
decompilation, analysis of many DMEONE DID BEFOF
popular executable/library formats
and instruction sets

IDA Pro - RE tool by Hexrays.
Costs too much.

The Process of Knowing - Tools to Aid in Knowing - dnSpy n__ll

Disassemble Decompile Debug

s

t uint randonumber)

22 id,
22 randomNumber

elleedIt", array);
int1=0;1¢3; i)
jint num = (uint)((uint)Encoder. (array2, 0 +1 %2

id |= num;
1

randonNunber = U

or (int § = 0; j <32 jH)
int num2 = (uint)((uint)Encoder.ReadBit(array2, 1+ * 2) « j);
randontiunber |= nun;

int num3 = (uint)(((int)Encoder.ReadByte(array2, 8) ¢« 8) | (int)Encoder.Readbyte(array2, 9));
int nund = id;
id /= 890;

irn nund % 89U == 0U 8& (uint)Encoder.Digest(array2, 8) == nun3;

The Process of Knowing - Tools to Aid in Knowing

Disassemble - Encoded instructions too hard to read? Turn them into
human-readable mnemonics (assembly)

The Process of Knowing - Tools to Aid in Knowing

Decompile - CIL assembly too hard ’roo r'ead') Turn |’r into a
high-level code representation e S

& id,

& randomNumber

=[] array = Encoder.D
byte[] array2 = RC4.
id = oU;

(i=0; i< 32; i+t

£ num = (
id |= num;
3

randomNumber = 0U;
(int j = @; j < 32; j++)
t num2 = (uint)((uint)Encoder.

randomNumber |= num2;

num3 = (uint)(((int)Encoder.
nt num4 = id;
id /= 89U;

num4 % 89U == QU && (uint)Encoder.C

t randomNumber)

", array);

(array2, @ + i * 2) << i);

(array2, 1+ 3 * 2) << 3);

(array2, 8) << 8) | (int)Encoder.Rea

(array2, 8) == num3;

=(array2, 9));

F (key As St
r, <S)sten’ Runtime. InteropServices
im array Byte() = En
Dim array2 As Byte() =

= @ul
or i As Integer = @ To 32 -

num As UInteger =
id = id Or num

randomNumber = QUI
j As Integer = @ To 32 -
num2 As UInt

num3
(array2, ‘))))

g, <Sys tem Runtime.InteropServices

r andomNumber s

ersieNeedIt”, array)

t(array2, @ + i * 2)) << i))

The Process of Knowing
Tools to Aid in Knowing

Debug - Still can't understand the
code through static analysis of the
binary alone?

Step through it instruction by
instruction while it is executing, and
view the program state and what
the instructions do step by step in
order to deduce what it is doing.

The Process of Knowing - Where to look?

Creeper World IlI We must find the code that
Arc Eternal creates this screen. But where

Enter your product key beww_— . N
If you don't have a key, visit knucklecracker.com for purchase info. ls lt)
o

To display this screen, we figure
that the code has to load the text
on it from somewhere.

That somewhere is probably in the
game binary. What if we did a
search for this keyword, "Key"?

The Process of Knowing - Where to look.

Search for functions that make
use of a String with "Key” in it
in dnSpy

This one looks interesting...

@Options Search For: [E] Number/String

And it turns out to be exactly
what we are looking for

, 20f),

The Process of Knowing - Where to look...

splay)

Tt seems that this (G

uistyle. . = ne (1f, 0.4f, 0.4f);
g Yy

meThOd IS r'espon5|b|e gu?tyle i = TextAnchor.Middle

of, sef, 280f, 20f), "Invalid Key. Double check the key and try again.”, guistyle);
for displaying the [B
Product Key screen. [
Reading through the i
method body will land
us at this very
obvious product key

check:

Now we Know (i)

(i) The process by which the Product Key screen is determined
to be shown, i.e. the game code that determines if there is a
valid key on record

We can now Crack this
game, or in other words
modify it To avoid the

key check.

Analogous to "modifying” a
bike lock's structure by
cutting to allow for theft
of the bike without
touching the lock itself

Now that we have Known (i): Cracking

The value upon which the game is
contingently loaded is a flag from pusss— ,
The meThOd: : [] array = Enco ;

flag - global::Encoder. (text, out num, out num): Gl bRl B ik i
for (int 1 =%9; i< 32; it

uint randomNumber)

So, what if we patch the method | st m (OO ity peiarrp2 ¥ 2

id |= num;

body to have it always return i ? S

for (int j = 0; j4°32; j+)

int nuwZ = (uint)((uint)Encoder.ReadBit{array2, 1 + 1.* 2) <« j);
raridonNumber |= num2;

int num3 = (uint)(((int)Encoder.ReadByte(array2, 8) << 8) | (i/t)Encpder.Reads
int num4 = id;

id /= 89U;

return numd % 89U == QU && (uint)Encoder.Digest(array2, 8) == num3;

Now that we have Known (i): Cracking

To patch the method, we will change a few
instructions in the method body.

= = Instructions i
Instructions Locals Exception Handlers Lol Locals = Exception Handlers

Body Type IL - Code Typs Bodvapeqill
v | Keep Old MaxStack z‘\ Init Locals Header RVA 0x96D50

[] Keep Old MaxStack [¥] Init Locals Header RVA 0x96D50 Header Offset 0x94F50
Index Offset OpCode Operand

Index Offset OpCode Operand
e

1
2

Header Offset 0x94F50

Now that we have Known (i): Cracking

Which yields a new decompilation:

W(string key, out uint id, out uint

What did we do?

ldc.i4.1 Push an Int32 "1" (boolean true) on the stack
ret Return from the method w/ top stack value

Essentially, a "return true;” which never leads to
execution of the old key checking code

Creeper World Il

Arc Eternal

Enter your product key below.
er.c

If you don't have a key, visit knucklecracker.com for purchase info

The Process of Knowing - How 2 do without patch?

Let's face it: patching isn't a clean solution. A clean solution is creating
legit keys yourself so you don't have to worry about patching.

We should investigate how the Product Keys are actually verified.

In practice, this is actually fairly difficult for many real applications,
buT ThlS game has a r'ela’rlvely sumple key gener'a‘rlon sysTem

byte[] array
te[] array2

The Process of Knowing - Key Verification Dissection

public static bool CheckKey(string key, out uint id, out uint randomNumber)
!
L
byte[] array = Encoder.Decode(key);
byte[] array2 = RC4.Cipher("SupportindieDevelopersWeNeedIt", array);
id - 0U;
for (int i = 0; i < 32; i++)
{
uint mum = (uint)((uint)Encoder.ReadBit(array?d, 0 + i * 2) << i);
id |- num;
t
randomNumber - OU;
for (int j = 0; j < 83; j++)
i

uint num? = (uint)((uint)Encoder.ReadBit(arrayd, 1 +« j * 2) << j);

randomNumber |- num2;
§
uint num3 = (uint)(((int)Encoder.ReadByte(array?, 8) << 8) |
(int)Encoder.ReadByte(array2, 9));
nint numd = id;
id /- 89U;
recurn num4 % 89U == OU && (uint)Encoder.Digest(arrayd, 8) == num3;

Decode key string to byte array
Decrypt (ARR)
ARR = "Decrypt” byte array with RC4

Extract all even position bits of the first
8 bytes of ARR into a 32-bit integer =
INTI

Extract "Random” Int (INT?2)

Extract all odd position bits of the first
8 bytes of ARR into a 32-bit integer =
INT2

Extract 16-bit MD5 Value (INT3)
Extract bytes 8 and 9 of ARR and
combine them into a 16-bit integer
stored in a 32-bit variable INT3
Validate Key

Check INT1 is divisible by 89 and the
16-bit integer formed by the first two
bytes of the MD5 digest of the first 8
bytes of ARR (INT1,INT2) equals INT3

The Process of Knowing - Key Dissection 1. Remove
dashes

7BMB-WFJG-XFNB- GXKX-PYDP (Key)
7BMBWF JGXPNBGXKXPYDP (RemoveDashes) . Decode as
7B MB WF JG XF NB 6X KX PY DP (AlphaUnmap b4) bytes using
B6 36 B8 04 F8 16 4F 7F AD 2A (AlphalUnmap after) g'l*g'"“a’fe.
b \xB6\x56\xE8\x04\xF8\x16\x4F\x7F \xAD\x2A" mapping

Return byte

Alternate Basel6 Mapping: array of
0125456789ABCDEF length 10

JNDMGHBKFCPZRYWX

tic char[] ALPHABET = new cha

The Process of Knowing - Key Decrypt Dissection

B6 36 E8 04 F8 16 4F 7F AD 2A (Before RC4)
9D 1D 19 CD 69 18 9F CB CG7 EC (After RC4)

Cipher the bytes with an RC4 keystream initialized with key

SupportIndieDevelopersWeNeedIt (ascii)
537570706F7274496E646965446576656C6F7065727357654E6565644974 (hex)

RC4 (Rivest Cipher 4):

Like a random number generator. Takes a key as the "seed,” and
then generates a stream of bytes which can be used to XOR
plaintext against to cipher it or XOR against ciphertext to
decipher. So we read 10 bytes of the keystream and XOR against
our Decoded Product Key.

The Process of Knowing - Key Dissection

9D 1D 19 CD 69 18 9F CB C7 EC
9D 1D 19 CD 69 18 9F CB

10011101 00011101 00011001 11001101 01101001 00011000 10011111 11001011

< - - /<= <)< -2 -
5210 7664 . .98

Traverse all "even” bit positions in the manner described, build the 32-bit int
starting from the least significant bit.
10010111010010011011010101110111

97 49 B5 77 = INT1
Same for the other INT2 value described, only traverse the "odd" bits

The Process of Knowing - Key MD5 Dissection
9D 1D 19 CD 69 18 9F CB C7 EC

MDA (
MDA (

Basically, this part is just extracting [, the last two bytes

which is supposed to be part of the key's MD5 hash.
The of the key must be the first two bytes of the
MD5 digest of

The Process of Knowing - Key Validation Dissection

Full Key (Deciphered): AINIDIIONCINGONIGROMICE (N0
Key INTI: 97 49 BS 77

The value of INT1 % 89 must be O. That is,
97 49 B5 77 = 2638190199
2668190199 % 89 == 0 (It is)

The value of the first two bytes of the MD5 digest of the first 8 bytes of
the key must be equal to the value of the last two bytes of the key.
) - [BBB3b0D0444446869d4bdafff7bRell

)10] I (It is)
J[1] (It is) Valid Key!
Now we Know (i)

(ii) The algorithm behind verifying the Product Key and any
methods, if possible and tractable, of generating the key
without knowing developer secrets

We can now Keygen this
game, which means
generating keys now that
we know the algorithm.

Analogous to picking a bike's
lock by "knowing how it
works" in order to allow for
theft of the bike without
destructive modification

Now that we have Known (ii): Keygen

generate_key():

* ks = get keystream(SECRET)
S.I-ep 1. Wr‘lTe The COde 1.0 keyst::a;. zj':'_.'t:s(:exc(ks] o range (16))
gener‘a'l'e a key USing Wha'I' re.i:d_]-::e’,f.= irf?dl::lf..randlnF(:?,z"32 // KEY MATCH INT) * KEY MATCH INT).to bytes(4, byteorder='little’)
rand_bytes = random.randbytes(4)

you have Known abou.l. The key bytes = interleave bits(rand key, rand bytes)
K A I . h key hash = hashlib.md5(key bytes).digest()
ey gor‘l.l. m xor (key bytes + key hash[0:2], keystream[0:10])

Step 2. ?7??

Step 3. PROFIT

https://github.com/ExtraConcentratedJuice/CreeperWorld3Keygen

https://www.google.com/url?q=https://github.com/ExtraJuiceMan/CreeperWorld3Keygen&sa=D&source=editors&ust=1748013822779784&usg=AOvVaw3KDbSU740Hb5z69Uwj3jrQ
https://www.google.com/url?q=https://github.com/ExtraConcentratedJuice/CreeperWorld3Keygen&sa=D&source=editors&ust=1748013822780080&usg=AOvVaw10LdhDr0FgN9PXaOikGwMG

Now that we have Known (ii): Keygen
1337 hd4xOr3di121110IHIHIT e

[3] Command Prompt - python cw3_keygen.py

Creeper World Il
Arc Eternal

Enter your product key below.
If you don't have a key, visit knucklecracker.com for purchase info.

Cw3>python cw3_keygen.py
CREEPER WORLD 3 GENERAT

Product Key

Enter Key

Let's be real: this is easy mode

We're playing on easy mode and this is an easy application to
crack. .NET in particular lends itself well to decompilation and it
is easy to reason about its behavior.

Additionally, the key generation algorithm for this game wasn't

particularly strong, nor was the code protected by obfuscation
such as in Denuvo-protected games.

Reverse engineering native code and native executables is a bit
more than just dropping an assembly into the decompiler...

