
Welcome

Hashcat

Password Cracking

What is a password?

A password is one of the three
different methods of
authentication.

Scan for blog post
on 2-factor

authentication.

How to Store Passwords

There are multiple ways
to store passwords.

Plain Text Hash + Salt

<--->
Level 00 Level 04

Scenario

When is password cracking relevant?

● Password cracking can be a step to privilege escalation.
● Examples:

○ A website or server is leaking password files to the public.
○ You have access to a lower privilege account on a system and want to

gain higher privilege.
○ Multiple other scenarios.

For this workshop, imagine you are an attacker that has
discovered daviscybersec.org is leaking passwords.

https://daviscybersec.org/

Level 00: Plain Text

Plain text passwords are worst way to store
passwords. If you are a developer, never ever store
passwords in plain text.

Challenge: Head to daviscybersec.org/passwords/00.txt
Can you figure out the password? It’s plain text so I hope
you don’t need a solution here...

https://daviscybersec.org/passwords/00.txt

Plain Text Breach Example

2009 RockYou Breach

RockYou, which made widgets for MySpace had a breach
resulting in over 32 million account’s login information
being exposed. On top of this, all the passwords were stored
in plain text.

This was completely preventable...

Decompressing rockyou.txt

Open a terminal and run cd /usr/share/wordlists
This folder holds useful wordlists you can use on your
adventures. You can use ls to see the contents of the
folder.

The passwords from the RockYou breach are included, but
compressed because it is quite large.

Use sudo gzip -d rockyou.txt.gz to decompress.

This is a restricted
folder, this runs a command

with root permissions.
Name of program Decompress Name of file

“Change Directory”

“List Directory Contents”

Level 01: Encoded

Encoded passwords have about the same security
level as plain text passwords, you just need an
extra step.

Challenge: Head to daviscybersec.org/passwords/01.txt

01.txt:
cGV0dGluZ2NoZWV0bzI0Nw==

Can you figure out the password? Test at
daviscybersec.org/login to check if you are right.

https://daviscybersec.org/passwords/01.txt

Level 01: Solution

01.txt:
cGV0dGluZ2NoZWV0bzI0Nw==

This looks like it is encoded in Base64.

Solution 1: Copy/paste into a website like cryptii.com

Solution 2: Use command

echo "cGV0dGluZ2NoZWV0bzI0Nw==" | base64 -d

Program to print to
the terminal

The string to print
wrapped in quotes

“Pipe”
Redirect output

to standard input

Base64
program Decrypt

flag

Level 02: Hashed

Hashes are strings of characters that have
been mathematically converted based on a specific algorithm.

We won’t go into specifics on the math, but know:

● String -> Hash: Easy
● Hash -> String: Very Hard

Example Hash Types: MD4, MD5, SHA-1, etc.

Challenge: Download daviscybersec.org/passwords/02.txt
Can you figure out the password? Test if you are right.
(You are not expected to know this yet.)

https://daviscybersec.org/passwords/02.txt

Level 02: Solution

02.txt:
fc36b1efebc9d6f1f3b12382d6560fe5

This is an MD5 type hash!
Solution: Use hashcat

Save 02.txt to your Downloads folder. (Ctrl + S on browser.)

Go to your Downloads by using cd ~/Downloads

Run
hashcat -a 0 -m 0 02.txt /usr/share/wordlists/rockyou.txt

Hashcat Program Attack Mode 0
(Straight)

Hash Type 0
MD5 Hash

File Name
With Hash

Wordlist
File

What is hashcat doing?

Hashcat is hashing every password in our
wordlist to the given hash format, then checking
it against our given hash.

Checking fc36b1efebc9d6f1f3b12382d6560fe5...

Wordlist Hashed Match

password5 --> db0edd04aaac4506f7edab03ac855d56 ❌
hacker --> d6a6bc0db10694a2d90e3a69648f3a03 ❌
catdog1 --> fc36b1efebc9d6f1f3b12382d6560fe5 ✔

Problems with MD5

1. Intersection Attack

MD5 is not entirely cryptographically secure, and should
not be used for passwords. Simplified: multiple passwords
can generate the same hash.

2. Rainbow Tables

Pre-generated hashes make the cracking progress even
quicker.

Level 03: Hash + Salt

Download daviscybersec.org/passwords/03.txt

03.txt:
$1$6Z4d3k5f$C/rBWOa.hcVLTBB3Q5AmL1

This is an MD5 hash with a salt. A salt is an added string
to the hashing process which makes it slower to use
passwords lists or brute force. Can you figure out the
password? Test it out!

Hash Prefix
1 = md5cyrpt

Salt
6Z4d3k5f

Hash
C/rBWOa.hcVLTBB3Q5AmL1

https://daviscybersec.org/passwords/03.txt

Level 03: Solution

Let’s use John the Ripper this time!

Save 03.txt to your Downloads folder.

Run
john --wordlist=/usr/share/wordlists/rockyou.txt 03.txt

Program Name Worldist Location Hash Location

Hashcat & John

Both are great! Each one has strengths and
weaknesses.

John is older but is compatible with system hashing. (Hence old flag format
--wordlist=/location/) John will also automatically brute force after
exhausted wordlist.

Hashcat it’s easy to use rules, use different attack types, and more.

Both are pretty smart! They can auto detect hash types and work with multiple
hashes at a time.

user1:hash1
user2:hash2
user3:hash3

Level 04: Hash + Salt + Unique

Using password lists is great, but what if a
password isn’t in a password list?

Download daviscybersec.org/passwords/04.txt:

04.txt:
1mZyJXWKf$fkFteq9H1/BGFpNNPTfC80

This will not work with a password list! Can you figure out
the password? Test it out!

https://daviscybersec.org/passwords/04.txt

Level 04: Solution

If you know the general format of a password,
you can use rules to modify password lists.
Examples: a to @, i to !, password + numbers

Let’s switch back to hashcat. There exists common rules
lists you can search how to use. Let’s just stick to
passwords + number. This is slow! Do it at home.

hashcat -a 3 -m 500 04.txt /usr/share/wordlists/rockyou.txt -1 ?d

md5crypt Mask #1
?d = 01234567890

Prevention

As a developer, how can we prevent this?

● Use OAuth - No need to store passwords.
● Implement 2-factor authentication - Cracked passwords cannot be

used despite being cracked.
● FOLLOW A RECENT AND RELEVANT TUTORIAL ON STORING PASSWORDS!!! USE A

SECURE HASH METHOD!!! (yescrypt, bcrypt, etc.)

As a user, how can we prevent this?

● Use 2-factor authentication whenever possible.
● Have strong unique passwords on each website, use a password

manager.

Level 05: Challenge Hash

Save daviscybersec.org/passwords/05.txt
Can you figure out the password? Test it out.

05.txt:
$2b$05$3EhiYUKKvZC74eH4UkkHnOasosRDWwZuMXX0FQ0m4TKXR/LHGWNj2

https://daviscybersec.org/passwords/05.txt

